Conformal blocks on torus:
Let τ be an element of the upper half plane

$$
\mathbb{H}=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}
$$

Denote the lattice $\mathbb{Z} \oplus \mathbb{Z} \tau$ by Γ.
Define torus by $E=\mathbb{C} / T$

Suppose $0 \leq \operatorname{Re} \tau<1$ and set $q=e^{2 \pi \sqrt{-1} \tau}$
Denote by G the transformation group of $\mathbb{C}^{*}=\mathbb{C} \backslash\{00\}$ generated by $f(\omega)=q \omega, \omega \in C^{*}$. "dilatation" Then $\mathbb{C}^{\prime} / G \cong E \quad\left(z \mapsto \omega=e^{2 \pi \sqrt{-1} z}\right)$
Now set $\zeta=2 \pi \sqrt{-1} z$ for the torus \mathbb{C}^{*} / G.
Since $\omega=e^{j} \rightarrow \quad S(\omega, z)=\frac{1}{2}$
Prop. $4 \longrightarrow T(\})=\sum_{n \in \mathbb{Z}}\left(L_{n}-\frac{c}{24} S_{n, 0}\right) e^{-n\}}$
$\Rightarrow L_{0}^{\prime}$ of torus \mathbb{C}^{*} / G is given by

$$
L_{0}^{\prime}=L_{0}-\frac{1}{24} c .
$$

action of dilatation operator:

$$
\left.q^{L_{0}-\frac{1}{24} c}\right\}=\exp 2 \pi \sqrt{-1} \tau\left(\Delta_{\lambda}+d-\frac{c}{24}\right) \xi, \quad \xi \in H_{\lambda}(d)
$$

Take distinct points p_{1}, \cdots, p_{n} on the torus \mathbb{C}^{*} / G and represent them as points in D. \longrightarrow associate level k highest weights, μ_{1}, \ldots, μ_{n} to p_{1}, \cdots, p_{n}.
associate H_{λ} to origin of ω-plane and H_{λ}^{*} to infinity.
\longrightarrow space of conformal blocks

$$
\mathcal{H}\left(0, p_{1}, \ldots, p_{n}, \infty ; \lambda_{1} \mu_{1}, \ldots, \mu_{n}, \lambda^{*}\right)
$$

$\psi \in H($ is linear operator

$$
\psi: H_{\lambda} \otimes H_{\mu_{1}} \otimes \ldots \otimes H_{\mu_{n}} \rightarrow F_{\lambda}
$$

Consider

$$
T_{r_{H_{2}}} q^{L_{0}-\frac{c}{24}}: H_{\mu_{1}} \otimes \ldots \otimes H_{\mu_{n}} \rightarrow \mathbb{C}
$$

and denote by

$$
H_{\lambda}\left(D_{i} p_{1}, \ldots, p_{n}, \mu_{1}, \ldots, \mu_{n}\right)
$$

the vector space of linear operators $T_{r_{H}} q^{L_{0}}-\frac{c}{24}$
for any

$$
\psi \in \mathcal{H}\left(0, p_{1}, \ldots, p_{n}, \infty ; \lambda_{1}, \mu_{1}, \cdots, \mu_{n}, \lambda^{*}\right)
$$

\longrightarrow Define the space of conformal blocks for the torus E by

$$
H\left(\left(E_{i} p_{1}, \cdots, p_{n} i \mu_{1}, \ldots, \mu_{n}\right)=\bigoplus_{0 \leq \lambda \leq k} \mathcal{H}_{\lambda}\left(D_{i} p_{1}, \ldots, p_{n}, \mu_{1}, \cdots, \mu_{n}\right)\right.
$$

\longrightarrow for $n=0$: basis of $H(E)$ is given by

$$
x_{\lambda}(t)=\operatorname{Tr}_{H_{\lambda}} q^{L_{0}-\frac{c}{24}}, \lambda=0,1, \ldots, k
$$

"characters of affine Lie algebra $A_{1}^{(1) "}$
We have:

$$
\begin{aligned}
& X_{\lambda}\left(-\frac{1}{\tau}\right)=\sum_{\mu} S_{\lambda \mu} X_{\mu}(\tau) \\
& X_{\lambda}(\tau+1)=\exp 2 \pi \sqrt{-1}\left(\Delta_{\lambda}-\frac{c}{2 \varphi}\right) X_{\lambda}(\tau)
\end{aligned}
$$

where $S_{\lambda \mu}$ and Δ_{λ} are given by

$$
\begin{aligned}
S_{\lambda \mu} & =\sqrt{\frac{2}{k+2}} \frac{\sin (\lambda+1)(\mu+1)}{k+2} \\
\Delta_{\lambda} & =\frac{\lambda(\lambda+2)}{4(k+2)}
\end{aligned}
$$

Put $S=\left(S_{\lambda \mu}\right)$ and $\operatorname{Diag}\left(\exp 2 \pi \sqrt{-1}\left(\Delta_{\lambda}-\frac{c}{24}\right)\right)$,

$$
0 \leqslant \lambda \leqslant k .
$$

$$
\rightarrow S^{2}=(S T)^{3}=I .
$$

Let R_{k} be complex vector space with basis $v_{\lambda}, 0 \leqslant \lambda \leqslant K$.
Define $v_{\lambda} \cdot v_{k}=\sum_{\nu} N_{\lambda \mu}^{\nu} v_{\nu}$ with linear extension an R_{k}. Here

$$
\left.N_{\lambda \mu}^{\nu}=\operatorname{dim} \min _{\lambda 0}\right)_{v}\left(\left(p_{1}, p_{2}, p_{3} ; \lambda, \mu, \nu^{*}\right)\right.
$$

For of $=\operatorname{sl}_{2}(\mathbb{C}): N_{\lambda \mu}^{v}=N_{\lambda \mu \nu}$ and $N_{\lambda \mu}^{\nu}=0$ or 1 .
Proposition 5:
The algebra R_{k} is commutative and associative.
Proof:
The commutativity follows from $N_{\lambda \mu}^{2}=N_{\mu \lambda}^{2}$
Associativity:

$$
\begin{aligned}
& \left(v_{\lambda_{1}} \cdot v_{\lambda_{2}}\right) \cdot v_{\lambda_{3}}=\sum_{\lambda_{1} \lambda_{4}} N_{\lambda_{1} \lambda_{2}}^{\lambda_{\lambda_{\lambda_{3}}}^{\lambda_{\lambda_{4}}}} N_{\mu_{1} \lambda_{4}} N_{\lambda_{1} \mu}^{\lambda_{4}} N_{\lambda_{2} \lambda_{3}}^{\mu} v_{\lambda_{4}}
\end{aligned}
$$

equality follows from:

$$
\sum_{\lambda} N_{\lambda_{1} \lambda_{2}}^{\lambda_{\lambda}} N_{\lambda \lambda_{3}}^{\lambda_{4}}=\sum_{\mu}^{\lambda_{1}} N_{\lambda_{1} \mu}^{\lambda_{4}} N_{\lambda_{2} \lambda_{3}}^{\mu}
$$

The algebra R_{k} is called "Verlinde algebra" or "fusion algebra" for the su(2)
Wess- Zumino-witten model at level k. If can be shown that

$$
\phi: \mathbb{C}[X] /\left(X^{k+1}\right) \longrightarrow R_{k}(x)
$$

defined by $\phi(x)=v$, is isomorphism.
Proposition G:

$$
\begin{aligned}
N_{\lambda \mu \nu} & =\operatorname{dim} H\left(p_{1}, p_{2}, p_{3} i \lambda_{1} \mu, \nu\right) \\
& =\sum_{\alpha} \frac{S_{\lambda \alpha} S_{\mu \alpha} S_{\nu \alpha}}{S_{a \alpha}}
\end{aligned}
$$

"Verlinde formula"

Proof:
Denote $\left(N_{\lambda}\right)=N_{\lambda \mu \nu}, 0 \leqslant \mu, \nu \leqslant k$ $(k+1) \times(k+1)$ matrix. For $\lambda=1: N_{1 \mu v}=1$ if $|\mu-2|=1$ and $N_{1 \mu \nu}=0$ else.
Check that matrix N_{1} is diagonalized by matrix S with eigenvalue $S_{\lambda 1} / S_{00}$, $\lambda=0,1, \ldots, k . v_{\lambda}, \lambda \geqslant 1$ is polynomial in $v_{1}(\sec (x))$
$\longrightarrow N_{\lambda}, \lambda \geqslant 1$ is polynomial in N_{1}.
$\Rightarrow N_{\lambda}$ is diagonalized by S as well, with eigenvalues $S_{\lambda m} / S_{0 \mu}, \mu=0,1, \ldots, k$ (exercise).
\longrightarrow Verlinde formula
Next: Basis of conformal blocks on sphere

$$
)-\left(\left(p_{1}, \ldots, p_{n} ; \lambda_{1}, \ldots, \lambda_{n}\right)\right.
$$

Take $\mu_{j}, 0 \leqslant j \leqslant n$ level k highest weights and $\mu_{0}=\mu_{n}=0$ st. ($\mu_{j-1,}, \lambda_{j} \cdot 1 \mu_{j}$) satisfies quantum (lebsch-Gordan rule
at level K. Consider chiral vertex operators

$$
\psi_{j}(z): H_{\mu_{j-1}} \otimes H_{\lambda_{j}} \rightarrow \bar{H}_{\mu_{j},} 1 \leqslant j \leqslant n,
$$

and associated operators

$$
\phi_{j} \cdot\left(z, \xi_{j}\right): H_{\mu_{j}-1} \longrightarrow \bar{H}_{\mu_{j},} \xi_{j} \in H_{\lambda_{j},} 1 \leqslant j \leqslant n
$$

Then the composition

$$
\phi_{n}\left(z_{n}, \xi_{n}\right) \ldots \phi_{1}\left(z_{1} \xi_{1}\right): H_{0} \rightarrow \bar{H}_{0}
$$

together with the correspondence

$$
\begin{aligned}
& \xi_{1} \otimes \cdots \otimes \xi_{n} \longrightarrow\left\langle v_{0}^{*}, \phi_{n}\left(z_{n}, \xi_{n}\right) \cdots \phi_{1}\left(z_{1}, \xi_{1}\right) v_{0}\right\rangle \\
& \left(v_{0} \in H_{0}, v_{0}^{*} \in H_{0}^{*}\right)
\end{aligned}
$$

determines a multilinear map

$$
\psi_{\mu_{0} \mu_{1}, \ldots \mu_{n}}\left(z_{1}, \cdots, z_{n}\right): H_{\lambda_{1}} \otimes \cdots \otimes H_{\lambda_{n}} \rightarrow \mathbb{C}
$$

\longrightarrow restriction an $V_{\lambda_{1}} \otimes \ldots \otimes V_{\lambda_{n}}$ satisfies $K Z$ equation.
Proposition 7:
$\operatorname{dim} H\left(p_{1}, \ldots, p_{n} ; \lambda_{1}, \ldots, \lambda_{n}\right)$

$$
=\sum_{0 \leq \lambda \leq k} \frac{S_{\lambda_{1} \lambda} \cdots S_{\lambda_{n \lambda}}}{\left(S_{0 \lambda}\right)^{n-2}}
$$

Proof:
Suppose $n \geqslant 3$. Then $\operatorname{dim} H\left(p_{1}, \ldots, p_{n} ; \lambda_{1}, \ldots, \lambda_{n}\right)$

$$
=\sum_{\mu_{1}, \cdots, m_{n-1}} \prod_{j=1}^{n} N_{\mu_{j-1} \lambda_{j} \mu_{j}}
$$

$\xrightarrow{\text { Prop. } 6} \sum_{0 \leq \lambda \leq k} \frac{S_{\lambda_{1} \lambda} \ldots S_{\lambda_{n \lambda}}}{\left(S_{o \lambda}\right)^{n-2}}$
"pairs of pants decomposition".

