$$\Rightarrow L_{o}' \quad \text{f forws } C^{*}/G \text{ is given by}$$

$$L_{o}' = L_{o} - \frac{1}{24} c.$$
action of dilatation operator:

$$q^{L_{o} - \frac{1}{24}c} \stackrel{\sim}{}_{2} = exp \text{ an FI} T(\Delta_{A} + d - \frac{c}{24}) \stackrel{\sim}{}_{3}, \stackrel{\sim}{}_{3} eH_{A}(d)$$
Take distinct points $p_{1, \dots, p_{n}}$ and the torus

$$C^{*}/G \text{ and represent them as points in D.}$$

$$\Rightarrow \text{associate level } K \text{ highest weights}$$

$$M_{1, \dots, M_{n}} \text{ to } p_{1, \dots, p_{n}}.$$

$$\text{associate } H_{A} \text{ to origin } f w \text{-plane and}$$

$$H_{A}^{*} \text{ to infinity}.$$

$$\Rightarrow \text{space } of conformal blocks}$$

$$H(O, p_{1, \dots, p_{n}, \infty; \lambda_{1}, \dots, e_{n}, \lambda^{*})$$

$$\Psi \in \mathcal{H} \text{ is linear operator}$$

$$\Psi: H_{\lambda} \otimes H_{m} \otimes \dots \otimes H_{m} \rightarrow \overline{H}_{\lambda}.$$

$$Consider$$

$$Tr_{H_{A}} q^{L_{o} - \frac{c}{24}} : H_{A} \otimes \dots \otimes H_{m} \rightarrow \overline{H}_{\lambda}.$$

$$Consider$$

$$Tr_{H_{A}} q^{L_{o} - \frac{c}{24}} : H_{A} \otimes \dots \otimes H_{m} \rightarrow \overline{H}_{\lambda}.$$

$$denote by$$

$$H_{a}(D : p_{1, \dots, p_{n}; M_{1, \dots, M_{n}})$$

$$He we ctor space of linear operators $\overline{Tr}_{H_{A}} q^{L_{o} - \frac{c}{24}}$$$

for any
$$Y \in \mathcal{H}(0, p_1, \dots, p_m, \infty; \lambda_1, \mu_1, \dots, \lambda_m)$$

 $\rightarrow Define the space of confirmal blocks
for the torus E by
 $\mathcal{H}(E; p_1, \dots, p_m; \mu_1, \dots, \mu_m) = \bigoplus_{0 \leq n \leq k} \mathcal{H}_{n}(D; p_1, \dots, p_m; \mu_1, \dots, \mu_m)$
 $\rightarrow for \underline{n=0}$: basis of $\mathcal{H}(E)$ is given by
 $\chi_{n}(t) = Tr_{H_{n}} q^{L_{0} - \frac{c_{1}}{2\Psi}}, \lambda = 0, 1, \dots, K$
"characters of affine λ is algebra $A_{1}^{(i)}$ ".
We have:
 $\chi_{n}(-\frac{1}{t}) = \sum_{m} S_{nm} \chi_{m}(t),$
 $\chi_{n}(\tau+1) = exp_{2\pi} in (\Delta_{n} - \frac{c_{1}}{2\Psi}) \chi_{n}(t)$
where S_{nm} and Δ_{n} are given by
 $S_{n} = \sqrt{\frac{2}{K+2}} \frac{\sin(n+1)(n+1)}{K+2}$
 $\Delta_{n} = \frac{\lambda (n+2)}{\Psi(K+2)}$
Put $S = (S_{nm})$ and $Diag(exp_{2\pi} in (\Delta_{n} - \frac{c_{1}}{2\Psi})),$
 $0 \leq \lambda \leq K$.
 $\rightarrow S^{2} = (ST)^{3} = I$.$

Let
$$R_{\kappa}$$
 be complex vector space with
basis U_{λ} , $0 \le \lambda \le \kappa$.
Define $U_{\lambda} \cdot U_{\kappa} = \sum_{i} N_{\lambda m}^{*} U_{i}$ with linear
extension on R_{κ} . Here
 $N_{\lambda m}^{*} = \dim \mathcal{H}(p_{i}, p_{\lambda}, p_{\lambda}; \lambda, m, v^{*})$
 $\sum_{\lambda m}^{\infty} O_{i}^{*}$
For $g = sl_{2}(C)$: $N_{\lambda m}^{*} = N_{\lambda m}v$ and $N_{\lambda m}^{*} = O_{i}N$.
 $\frac{Proposition 5}{1}$:
The algebra R_{κ} is commutative and
associative.
 $\frac{Proof:}{1}$
The commutativity follows from $N_{\lambda m}^{*} = N_{m\lambda}^{*}$
Associativity:
 $(U_{\lambda}, U_{\lambda}) \cdot U_{\lambda} = \sum_{m i \lambda m} N_{\lambda m}^{\lambda m} N_{\lambda m}^{\lambda m} U_{\lambda m}^{\lambda}$

equality follows from:

$$\sum_{\lambda} N_{\lambda_{1}\lambda_{2}}^{\lambda} N_{\lambda_{2}\lambda_{3}}^{\lambda_{y}} = \sum_{\lambda_{1}} N_{\lambda_{1}\dots}^{\lambda_{y}} N_{\lambda_{2}\lambda_{3}}^{\lambda_{2}}$$

$$\sum_{\lambda_{1}} \frac{\lambda_{2}}{\lambda_{2}} \sum_{\lambda_{2}} \frac{\lambda_{2}}{\lambda_{3}} = \sum_{\mu} \frac{\lambda_{\mu}}{\lambda_{4}}$$
The algebra R_{k} is called "Verlinde algebre"
or "fusion algebra" for the SU(A)
Wess-Zumino-Witten model at level K.
If can be shown that
 $\varphi : C[X]/(X^{k_{H}}) \longrightarrow R_{k}$ (*)
defined by $\varphi(X) = \varphi$ is isomorphism.
Proposition 6:
 $N_{\lambda_{n}\nu} = \dim H(p_{i}, p_{2}, p_{3}; \lambda_{1}, m, \nu)$
 $= \sum_{\lambda} \frac{S_{n\lambda}}{S_{0\lambda}} \frac{S_{\nu\lambda}}{S_{0\lambda}}$
"Verlinde formula"

$$\frac{\Pr oof:}{\operatorname{Denote}(N_{\lambda}) = \operatorname{N}_{\lambda m r}, \quad 0 \leq m, r \leq k}$$

$$(k+1) \times (k+1) \operatorname{matrix} \cdot \operatorname{Fa} \lambda = 1: \operatorname{N}_{1mr} = 1 \text{ if }$$

$$\operatorname{Im} - r = 1 \quad \text{and} \quad \operatorname{N}_{1mr} = 0 \quad \text{else}.$$

$$\operatorname{Check} + \operatorname{Hat} \quad \operatorname{matrix} \quad \operatorname{N}_{1} \text{ is diagonalized}$$

$$\operatorname{by} \quad \operatorname{matrix} \quad S \quad \text{with} \quad \operatorname{eigenvalue} \quad S_{\lambda 1}/S_{\circ o},$$

$$\lambda = 0, 1, \cdots, k. \quad U_{\lambda_{1}} \quad \lambda \geq 1 \quad \text{is polynomial}$$

$$\operatorname{in} \quad U_{1} \quad (See \quad (*))$$

$$\longrightarrow \operatorname{N}_{\lambda_{1}} \quad \lambda \geq 1 \quad \text{is polynomial} \quad \operatorname{in} \quad \operatorname{N}_{1}.$$

$$\implies \operatorname{N}_{\lambda} \quad \mathcal{R} \quad diagonalized \quad by \quad S \quad as \quad well,$$

$$\operatorname{with} \quad \operatorname{eigenvalues} \quad S_{2m}/S_{om}, \quad m = 0, 1, \cdots, k$$

$$(exercise).$$

$$\longrightarrow \operatorname{Verlinde} \quad formula$$

Next: Basis of conformal blocks on sphere)-((p,,...,pn; 2,,...,2n) Take M;, 0 ≤ j ≤ n level K highest weights and mo=mn=0 s.t. (M;-,2; M;) satisfies quantum (lebsch-Gordan rule

